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Abstract
Background: As a core practice in software engineering, the na-

ture of code review has been frequently subject to research. Prior

exploratory studies found that code review, the discussion around

a code change among humans, forms a communication network

that enables its participants to exchange and spread information.

Although popular in software engineering, there is no confirma-

tory research corroborating this theory and the actual extent of

information diffusion in code review is not well understood.

Objective: In this registered report, we propose an observational

study to measure information diffusion in code review to test the

theory of code review as communication network.

Method:We approximate the information diffusion in code review

through the frequency and the similarity between (1) human par-

ticipants, (2) affected components, and (3) involved teams of linked

code reviews. The measurements approximating the information

diffusion in code review serve as a foundation for falsifying the

theory of code review as communication network.
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1 Introduction
The theory is compelling: Modern software systems are often too

large, too complex, and evolve too fast for an individual developer

to oversee all parts of the software and, thus, to understand all

implications of a change. Therefore, most software projects rely

on code review to foster discussions on changes and their impacts

before they are merged into the code bases. During those discus-

sions, the participants exchange information and when needed and

deemed relevant, the information is passed on in subsequent code

reviews. Thereby, the information diffuses in the communication

network that emerges from code review.

This theory is based on the solid and thorough exploratory re-

search that identified information exchange as a key expectation
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Figure 1: The empirical research cycle (in analogy to [9]):
While exploratory research is theory-generating using in-
ductive reasoning (starting with observations), confirmatory
research is theory-testing using deductive reasoning (start-
ing with a theory). This research is confirmatory.

towards code review [2, 3, 5, 6, 19]—also beyond teams and archi-

tectural boundaries [2, 3, 4]—which makes code review a commu-

nication network.

While this theory is plausible, exploratory research alone is not

sufficient—it also requires the confirmatory counterpart, which is

currently missing. Exploratory research begins with specific obser-

vations, distills patterns in those observations, and derives theories

from the observed patterns using inductive reasoning. The nature

of exploratory research leads to limited generalizability as they

are drawn from specific cases. As such, it is more susceptible to

researcher bias due to the absence of a predefined theory. Deduc-

tive research starts with a general theory, makes predictions (often

in the form of hypotheses), and evaluates whether that predic-

tion holds true or not in empirical observations. In research, we

need both exploratory and confirmatory research to minimize bias

and maximize the validity and reliability of theories efficiently. Fig-

ure 1 shows the empirical research cycle involving both exploratory

(theory-generating) and confirmatory (theory-testing) research.

In the proposed study, we aim to fill that gap: The objective is

to test the theory of code review as communication network. In-

stead of using classical statistical tests for the hypothesis testing,

we quantify the extent of information diffusion in the code review

system at Spotify, which may or may not contradict the underlying
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theory of code review as communication network or its univer-

sality. A single empirical code review system with no or marginal

information diffusion could not be aligned with the existing the-

ory of code review as communication network in general; further

constraints, context, or limitations must be considered. Therefore,

we measure information diffusion in code review at Spotify across

social, organizational, and architectural boundaries.

2 Background
2.1 Code Review As Communication Network
The theory of code review as communication network is based on

different exploratory studies that investigated the motivations and

expectations towards code review in an industrial context [2, 3, 5,

6, 19]. In a synthesis of expectations and motivations towards code

review reported by the exploratory studies, Dorner et al. identified

that information
1
exchange as the cause for all effects expected

from code review [8].

2.2 Code Review Networks
In contrast to other work (e.g., [4, 7, 11, 21, 22]) using social network

analysis to investigate code review, we use a code review network

as the name suggests: a network of code reviews whose nodes

represent code reviews and links indicate the references to other

code reviews explicitly and manually added by human code review

participants.

This modelling approach is not novel. Li et al. and Hirao et al.

used this modelling approach to explore the links between code

reviews. Hirao et al. explored the links between code reviews in six

open-source projects that use Gerrit as a code review tool [12]. Li et

al. extended themodelling and investigation beyond pull requests to

issues and identified patterns among the linkings [15]. Although the

context (i.e., open-source software development), research objective,

and analyses of those studies are not comparable, our modelling

approach for the code review network, which we will discuss in

Section 3.2 in detail, is similar but differs as we exclude all non-

human linking activities (in contrast to [12, 15] and use code review

only (in contrast to [15]).

2.3 Measuring Information Diffusion in Code
Review

Although different qualitative studies report information sharing

as a key expectation towards code review [2, 3, 5, 6, 19], only three

prior studies have quantified information exchange in code review.

In an in-silico experiment, Dorner et al. simulated an artificial

information diffusion within large (Microsoft), mid-sized (Spotify),

1
We consistently use information instead of knowledge as in prior work [2, 3, 5, 6, 19]

throughout this study and concur, thereby, with [8] and [17]. Although not equivalent,

information encodes knowledge since knowledge is the meaning that may be derived

from information through interpretation. This means that we may see information

as a superset of knowledge. Hence, not all information is necessarily knowledge, but

all knowledge is information. This allows us to subsume different stances, definitions,

and notions of knowledge without an epistemological reflection upon the various

definitions of knowledge. Furthermore, we can refrain from delineating the notion of

knowledge from the notion of truth, the latter being too often an inherent connotation

of knowledge. We may well postulate that not everything communicated is true. Opin-

ions, expectations, misunderstandings, or best guesses are also part of any engineering

and development process and do not meet knowledge and, consequently, truth by all

definitions.

and small code review systems (Trivago) modelled as communi-

cation networks [8]. We measured the minimal topological and

temporal distances between the participants to quantify how far

and how fast information can spread in code review. We found evi-

dence that the communication network emerging from code review

scales well and spreads information fast and broadly, corroborating

the findings of prior qualitative work. The reported upper bound

of information diffusion, however, describes information diffusion

in code review under best-case assumptions, which are unlikely to

be achieved. While the upper bound of information diffusion helps

us already to understand the boundaries of code review as a com-

munication network, it still does not substitute a more profound

empirical measurement, for which we set the foundation with this

registered report.

In the first observational study, Rigby and Bird extended the

expertise measure proposed by Mockus and Herbsleb [16]. The

study contrasts the number of files a developer has modified with

the number of files the developer knows about (submitted files ∪
reviewed files) and found a substantial increase in the number of

files a developer knows about exclusively through code review.

A second observational study [19] reports (a) the number of

comments per change a change author receives over tenure at

Google and (b) the median number of files edited, reviewed, and

both—as suggested by Rigby and Bird [18]. The study finds that the

more senior a code change author is, the fewer code comments he or

she gets. The authors “postulate that this decrease in commenting

results from reviewers needing to ask fewer questions as they build

familiarity with the codebase and corroborates the hypothesis that

the educational aspect of code review may pay off over time.” In

its second measurement, the study reproduces the measurements

of Rigby and Bird but reports it over the tenure of employees at

Google. They showed that reviewed and edited files are distinct

sets to a large degree.

Although the proposed file-based network creation is a sophisti-

cated approach and may serve as a complement measurement in

future studies, we found the following limitations in the measure-

ment applied in prior work:

• File names may change over time, which introduces an un-

known error to those measurements.

• The software-architectural or other technical aspects (e.g.,

programming language, coding guidelines) of code make

the measurements difficult to compare in heterogeneous

software projects.

• We are unaware of empirical evidence that passive exposure

to files in code review would lead to improved developer

fluency.

• The explanatory power of both measurements is limited

since the authors set arbitrary boundaries: [18] excluded

changes and reviews that contain more than ten files, and

[19] limited the tenure of developers to 18 months and ag-

gregated the tenure of developers by three months.

Furthermore, our code-review-based approach differs in two as-

pects: First, information in code review is not only encoded in the

source code but also is also in the discussions within a code re-

view. A file-based approach does not reveal this type of information

diffusion. Our code-review-based approach includes information
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encoded in the affected files and in the related discussions but

also subsumes information on other abstraction layers of the soft-

ware system. Second, a file-based approach assumes a passive and

implicit information diffusion. That is, information is passively

absorbed during review by the developers. In contrast, the infor-

mation diffusion captured by a code-review-based approach like

ours is an active information diffusion, that is, a developer actively

and explicitly links information that she or he deems to be worth

linking, which makes linking a human, explicit, and active decision.

3 Research Design
We designed this study as an observational study [1] measuring the

information diffusion in code review at Spotify. The measurement is

not an end in itself but serves as the foundation for our hypothesis

test
2
: A single empirical code review system—Spotify’s code review

system, for example—with no or marginal information diffusion

could not be aligned with the existing theory of code review as

a communication network in general, and the theory as it stands

would be falsified (reductio ad absurdum). The theory must then be

revised or reformulated more precisely (e.g., by adding limitations,

constraints, or conditions).

In the next subsection, we state our hypotheses and discuss how

we qualitatively reject our hypotheses outside classical statistical

tests.

3.1 Hypotheses
If code review is a communication network that enables the ex-

change of information (theory 𝑇 ) as identified by different ex-

ploratory studies [8], then information substantially spread in code

review

• between code review participants (hypothesis 𝐻1) and

• between code software components (hypothesis 𝐻2) and

• between teams (hypothesis 𝐻3).

We can formulate this sentence as the propositional statement

𝑇 =⇒ (𝐻1 ∧ 𝐻2 ∧ 𝐻3) . (1)

That means our theory 𝑇 can be falsified in its universality if

one of our hypotheses cannot withstand an empirical measurement.

Instead of defining arbitrary thresholds for rejecting our hypothesis,

we propose a qualitative rejection criterion. This implies we will

reject our hypotheses based on a comprehensive discussion of the

observations of information diffusion in code review at Spotify.

As for any observational study, the measurement model, measur-

ing system, and actual measurement define the quality of the study.

Therefore, we present our measurement model, the measuring sys-

tem, and the actual measurement following the definitions in the

International Vocabulary of Metrology [13] in the next subsections

in detail.

2
Hypothesis testing is often associated with statistical hypothesis testing, which

is not applicable in our case, regardless of its flavor (frequentist or Bayesian). A

statistical hypothesis test is built upon propositions in the context of a population

using data drawn from a sample. We, however, do not sample in this study. As for any

observational study, we do not aim for generalization but aim to describe and uncover

associations and patterns without regard to causal relationships [1].

𝑐1

𝑐4

𝑐2

𝑐0

𝑐3

Figure 2: An exemplary code review network with code re-
views as vertices and references between them as edges. Code
reviews can reference one (see 𝑐1, which references 𝑐2), mul-
tiple (see 𝑐2, which references 𝑐0 and 𝑐3), or no other code
review (see 𝑐4).

3.2 Measurement model
A measurement model is the mathematical relation among all quan-

tities known to be involved in a measurement. In this section, we

describe the three approaches to quantifying information diffu-

sion in code review, which are the foundation for the qualitative

rejection of our hypotheses.

We use a code review network to model information diffusion

in code review. We define a code review network—in its verbatim

meaning—as a network of code reviews whose nodes represent code

reviews and whose links indicate a reference between code reviews,

explicitly and manually added by code review participants. We

argue that the explicit and manual referencing by code review par-

ticipants is a strong indicator of actual information exchange from

one code review to another. This assumption allows us to measure

information diffusion without analyzing the specific information

that was exchanged and its context.

Mathematically, we model those code review networks as a di-

rected graph 𝐺 = (𝐶, 𝑅) where
• 𝐶 is a set of vertices representing code reviews and

• 𝑅 is a set of edges which are ordered pairs of vertices repre-

senting the references between code reviews:

𝑅 ⊆
{
(𝑎, 𝑏) | (𝑎, 𝑏) ∈ 𝐶2

and 𝑎 ≠ 𝑏
}

The direction of those edges represents the reference: The

directed edge (𝑎, 𝑏) represents a code review 𝑎 referencing

code review 𝑏.

Figure 2 depicts such a simple and small code review network

with five code reviews linked to each other.

The relative number of linked code reviews is the first approach

to quantifying information diffusion in code review and, therefore,

the first input for our discussion on its significance.

In a second approach, we approximate information diffusion

in code review by measuring the similarity (or dissimilarity) of

code review participants, software architecture, or organizational

structure in linked code reviews: The more dissimilar the set of

participants, affected code components, or involved teams of the

linked code reviews, the broader the information spread in code

review is.

Therefore, we enhance each code review with further informa-

tion for each hypothesis:
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• 𝑓1 : 𝐶 → {participants} where a code review is mapped to

its participants addressing 𝐻1

• 𝑓2 : 𝐶 → {components} where a code review is mapped to

the affected components addressing 𝐻2

• 𝑓3 : 𝐶 → {teams} where the code review is mapped to the

owning teams of the affected component addressing 𝐻3

Through those enhancements, we gain insights into information

diffusion into three orthogonal dimensions: A social dimension,

where information diffuses between code review participants; a soft-

ware architectural dimension, where information diffuses software

components under review; and an organizational dimension, where

information diffuses between teams. Those orthogonal dimensions

allow us to investigate information diffusion from different angles:

Information may spread between components but may never leave

the team boundaries since both components are owned by the same

team.

After enhancing, we apply two different similarity measures

based on the type of enhancement to make the linked code reviews

comparable along the three dimensions:

• Code review participants and teams are sets. We apply the

Jaccard index to quantify the similarity between two sets.

The Jaccard index (or Jaccard similarity coefficient) for two

sets 𝐴 and 𝐵 is defined by

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | =

|𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 | . (2)

• For the tree-like component structure, set-based operations

fall short. Instead, we use the graph edit distance, which is a

measure of similarity (or dissimilarity) between two compo-

nent graphs [10]. The graph edit distance finds the minimal

set of edit operations (insertion, deletion, substitution), in

terms of cost, needed to transform one graph into another.
3

Mathematically, we define the graph edit distance as

𝐺𝐸𝐷 (𝐺1,𝐺2) = min

(𝑒1,...,𝑒𝑘 ) ∈P (𝐺1,𝐺2 )

𝑘∑︁
𝑖=1

𝑐 (𝑒𝑖 ) (3)

where P(𝐺1,𝐺2) denotes the set of edit paths transforming

𝐺1 into (a graph isomorphic to) 𝐺2 and 𝑐 (𝑒) ≥ 0 is the cost

of each graph edit operation 𝑒 .

Both similarity measures are normalized, i.e., [0, 1]. The smaller

the similarity measures, the more dissimilar the set of participants,

affected code components, or involved teams of the linked code re-

views. This allows us to approximate information diffusion in code

review by measuring the similarity (or dissimilarity) of code review

participants, software architecture, or organizational structure in

linked code reviews: The smaller the similarity measures, the more

dissimilar the set of participants, affected code components, or in-

volved teams of the linked code reviews. The distribution of those

similarities will indicate to what extent information spread across

the boundaries mentioned before.

In Figure 3, we exemplify how we will use the similarities mea-

sures for discussion on falsifying the theory by three possible

3
The graph edit distance between two graphs resembles the likely better-known string

edit distance between strings: With the interpretation of strings as connected, directed

acyclic graphs of maximum degree one, classical definitions of edit distance such as

Levenshtein distance or Hamming distance may be interpreted as graph edit distances

between suitably constrained graphs.

archetypes of cumulative distributions of all three similarity mea-

sures and their relation to the theory test.

Aside from the two quantitative approaches, we plan to include

also a visual approach. The ownership of code components allows

us to cluster components per owning team, providing a more intu-

itive, human-comprehensive perspective. Figure 4 uses a circular

graph layout of the components grouped by the owning teams. The

components are linked via the code review network𝐺 = (𝐶, 𝑅). We

hope this visualization helps identify hot and cold spots and reveals

the first patterns of information diffusion. However, depending

on the extent of information between components and teams, the

visualization may highlight the hot and cold spots of information

diffusion, but it can also be visually overwhelming in case of a

massive information diffusion.

3.3 Measuring system
A measuring system is the set of measuring instruments and other

components assembled and adapted to give information used to

generatemeasured valueswithin specified intervals for quantities of

specified kinds. As common in software engineering, our measuring

system is a data extraction and analysis pipeline.

Since our measuring system is not trivial, involves a lesser-

known GitHub API endpoint, and requires different data sources,

we describe our measuring system in this dedicated section. Fig-

ure 5 provides a high-level overview of our measuring instrument,

which we describe in detail in the following.

The first data source for our measuring instrument is the GitHub

Enterprise instance and its REST or GraphQL API. For our mea-

surement, we follow the REST API. In GitHub, a pull request is a

code review. GitHub automatically tracks
4
when a user references

an issue and pull requests in such. Since internally, a code review is

an issue in GitHub, we can tap the GitHub REST API endpoint for

timeline events of issues
5
. The timeline events contain all events

triggered by activities in a pull request or issue, including the auto-

mated links to other pull requests or issue. GitHub’s event endpoint

/events is not suitable for extracting the event data because this

API endpoint returns only a maximum of 300 events and only for

the last 90 days
6
. The outcome of the crawling is a list of all events.

Tapping the timeline events API requires the related pull requests.

The GitHub search is not suitable for including or excluding pull

requests since it limits its results to 1000 results per search, which

is not enough at Spotify’s scale. Therefore, we had to collect all pull

requests from all repositories from all teams from GitHub.

We need the pull request information for two further steps:

• For each pull request, we also extract all files in a pull request

to map those files to components in later steps.

• Since there is pull request creation event available
7
, we add

those information from the pull endpoint.

4
https://docs.github.com/en/get-started/writing-on-github/working-with-

advanced-formatting/autolinked-references-and-urls#issues-and-pull-requests

5
https://docs.github.com/en/enterprise-server@3.10/rest/issues/timeline?

apiVersion=2022-11-28#list-timeline-events-for-an-issue

6
https://docs.github.com/en/enterprise-server@3.10/rest/activity/events?

apiVersion=2022-11-28#about-github-events

7
https://docs.github.com/en/enterprise-server@3.10/rest/overview/issue-event-

types?apiVersion=2022-11-28

/events
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/autolinked-references-and-urls#issues-and-pull-requests
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/autolinked-references-and-urls#issues-and-pull-requests
https://docs.github.com/en/enterprise-server@3.10/rest/issues/timeline?apiVersion=2022-11-28#list-timeline-events-for-an-issue
https://docs.github.com/en/enterprise-server@3.10/rest/issues/timeline?apiVersion=2022-11-28#list-timeline-events-for-an-issue
https://docs.github.com/en/enterprise-server@3.10/rest/activity/events?apiVersion=2022-11-28#about-github-events
https://docs.github.com/en/enterprise-server@3.10/rest/activity/events?apiVersion=2022-11-28#about-github-events
https://docs.github.com/en/enterprise-server@3.10/rest/overview/issue-event-types?apiVersion=2022-11-28
https://docs.github.com/en/enterprise-server@3.10/rest/overview/issue-event-types?apiVersion=2022-11-28
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(a) A large dissimilarity between linked
code reviews along all three dimensions
implies that information diffuses beyond
all three boundaries; our theory is not fal-
sified.
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(b) A large dissimilarity of code review par-
ticipants and a large similarity of teams
among linked code reviews imply that in-
formation diffuses within a team rather
than between teams; our theory is falsified
in its universality.
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(c) A large similarity among all dimensions
means that information diffuses to a small
extent between participants, teams, and
components; our theory is falsified.

Figure 3: Three examples of cumulative distributions of the information diffusion measured in form of similarity of linked
code reviews with respect to participants, components, and teams: Depending on the discussions of those results, we may or
may not reject our hypotheses and, thus, falsify our theory.
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Figure 4: A circular layout of the components grouped by the
owning teams and linked by code reviews. This visualization
may be too cluttered for massive information diffusion.

We then filter the list of events according to the sampling frame

and exclude all events from bots.

After filtering, we extract

• all events of type reference8 and its payload, the referenced
pull request (code review) which results in a code review

8
https://docs.github.com/en/enterprise-server@3.10/rest/overview/issue-event-

types?apiVersion=2022-11-28#referenced

network 𝐺 = (𝐶, 𝑅), the first input of our measurement

model, and

• all human participants grouped by each code review which

results in the mapping of code review to its participants

𝑓1 : 𝐶 → participants, a second input for our measurement

model.

We believe that the GitHub referencing system is a reliable source.

Two studies rely on this referencing system in GitHub [14, 23].

However, both use the so-called -mentions that reference a user

but not the references to issues or pull requests.

The second source for our measurement model is the software

architecture description tracking all components. Spotify uses a

tool called Backstage
9
for tracking its software architecture. For

each pull request, we extracted all files and mapped the files to com-

ponents. A software component is a self-contained, reusable piece

of software that encapsulates the internal construction and exposes

its functionality through a well-defined interface so other com-

ponents can use the functionality. Software components can take

many forms, including libraries, modules, classes, functions, or even

entire microservices or applications. Components are hierarchically

structured and may contain files or recursively other components.

At Spotify, the component structure maps to the virtual folder

structure of the source code. That means software components are

specific folders that contain files.

Since the component structure evolves over time, we map the

files to the component structure at the time when the code reviews

are referenced. Therefore, we use the available historical daily snap-

shots of the software architecture at Spotify.

To identify the component of the files in a pull request efficiently,

we create a file graph reflecting the paths of all changed files per

code review and a time-varying component graph reflecting the

component structure for each given day. The leaves of the intersec-

tion of both graphs represent the components for the files changed

in a pull request. Figure 6 sketches the intersection of both graphs.

9
https://backstage.io

https://docs.github.com/en/enterprise-server@3.10/rest/overview/issue-event-types?apiVersion=2022-11-28#referenced
https://docs.github.com/en/enterprise-server@3.10/rest/overview/issue-event-types?apiVersion=2022-11-28#referenced
https://backstage.io
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GitHub Enterprise instance

Get all teams

Get all repos

Get all pulls

Get files

Get all timeline events

Add pull creation to events

Filter events

Extract events of

type referenced

REST API

REST API

REST API

REST API

REST API

Identify component

Backstage

Identify component owner

Participants grouped

by code review

teams

repositories

pulls

events

events

events

components

files

𝐺 = (𝐶,𝑅) 𝑓3 : 𝐶 →
teams

𝑓1 : 𝐶 →
participants

𝑓2 : 𝐶 →
components

Measurement model (Section 3.2)

Data sources

Activities

Data flow

Model input

Legend

Figure 5: An overview of our measuring instrument. The raw
data is extracted from two different sources, Spotify’s inter-
nal GitHub Enterprise ( light blue ) and Backstage instance

( yellow ). The results feed into the measurement model.

This mapping code reviews to components 𝑓2 : 𝐶 → components

is the third input for our measurement model.

For each identified component, we also identify its owner. Com-

ponent ownership refers to the concept of assigning responsibility

and accountability for a particular software component to an in-

dividual or an organizational unit within an organization. Spotify

∩ =

File graph

Component

graph

Intersection

graph

File Component Folder Component of changed files

Legend

Figure 6: By intersecting the file graph (representing the
changed files discussed in a code review) and the component
graph (representing the component structure), we can extract
the components of the changed files by extracting the leaves
of the intersection graph efficiently.

uses weak code-ownership [20]. The mapping code review to owner

𝑓3 : 𝐶 → teams is the fourth input for our measurement model.

3.4 Measurement
The measurement is the process of experimentally obtaining values

that can be reasonably attributed to a quantity together with any

other available relevant information.

For our measurement, we use Spotify’s internal GitHub Enter-

prise and the Backstage instance. It comprises all Spotify-internal

code reviews and components. We will run our measurement in

2024. Our sampling frame is one year and includes the timeframe

[2019-01-01, 2019-12-31]. This timeframe, outside of the ongoing

developments at Spotify, allows us to publish all data in an anonymized

way. However, the extent of information diffusionwewill findmight

require us to shorten the timeframe.

4 Limitations
In general, the chain of evidence of our study depends on two

main factors: (1) the measurement model, measuring system, and

actual measurement, and (2) the thoroughness of our discussion for

qualitatively rejecting the hypotheses and, thereby, falsifying the

theory of code review as communication network.

Although we will not be able to provide the complete raw data

and only a prototypical extraction pipeline for Backstage, we be-

lieve that our thorough description of our measurement model,

measuring system, and the actual measurement at Spotify provides

a solid foundation for this line of research. Our replication package

will contain the necessary yet anonymized data to reproduce and

replicate our study beyond the context of Spotify. However, as for

every data-driven study, missing, incomplete, faulty, or unreliable

data may significantly affect the validity of our study. To mitigate

those risks, we conducted a pilot study in October 2023. Although

we have not encountered such threats to validity, we cannot exclude

data-related limitations. Therefore, this section will also cover the

limitations that come from excluding or missing data once our data

collection is completed.
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However, we believe the twomost critical limitations of our study

lie in the nature of a qualitative falsification of theories. Although

traditional statistical hypothesis tests also have their limitations

and, ultimately, also represent an implicit and qualitative discus-

sion, we believe that a discussion remains more prone to bias, most

importantly because there are no clear criteria to reject the hypothe-

ses upfront. Such clear rejection and falsification criteria are not

possible and meaningful upfront for this research; all thresholds,

values, or estimates would be arbitrary. However, we believe that

a comprehensive discussion makes a potential bias explicit and al-

lows other researchers to conclude differently. Additionally, we will

publish our measurement system and all intermediate anonymized

data to enable other researchers to replicate our work.

Second, even if our data and a thorough discussion suggest falsi-

fying our theory by rejecting one of the hypotheses, our modelling

approach may not capture the (relevant) information diffusion in

code review. Although we have strong indications that the explicit

referencing of code reviews is an active and explicit information

diffusion triggered by human assessment, we are not aware of

empirical evidence that supports our assumption.

Although already discussed in Section 3, we emphasize again

that the findings of the extent of information diffusion will not be

generalizable. We do not believe that this is a major limitation of our

research design since our argumentation is based on contradiction

(reductio ad absurdum).

This section will also include a detailed discussion of limitations

that originate in incomplete or missing data when they become

visible after the data collection and analysis.
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